Wnioskowanie i związki przyczynowe w Pythonie. Nowoczesne uczenie maszynowe z wykorzystaniem bibliot

  • Data premiery 2024/05/28
  • Wydawca: Helion
  • Produkt chwilowo niedostępny
£ 25.90
£ 28.78
Brutto
Ilość
Obecnie brak na stanie

Dodaj do schowka

W uczeniu maszynowym odkrywanie związków przyczynowych daje możliwości, jakich nie można uzyskać tradycyjnymi technikami statystycznymi. Najnowsze trendy w programowaniu pokazują, że przyczynowość staje się kluczowym zagadnieniem dla generatywnej sztucznej inteligencji. Niezbędna okazuje się więc znajomość grafów przyczynowych i zapytań konfrontacyjnych.



Dzięki tej książce łatwo przyswoisz teoretyczne podstawy i zaczniesz je płynnie wdrażać w rzeczywistych scenariuszach. Dowiesz się, w jaki sposób myślenie przyczynowe ułatwia rozwiązywanie problemów, i poznasz pojęcia Pearla, takie jak strukturalny model przyczynowy, interwencje, kontrfakty itp. Każde zagadnienie zostało dokładnie wyjaśnione i opatrzone zbiorem praktycznych ćwiczeń z kodem w Pythonie. Nauczysz się także implementować poszczególne modele i zrozumiesz, czym się kierować przy wyborze technik i algorytmów do rozwiązywania konkretnych scenariuszy przyczynowych. To przewodnik, który docenią szczególnie inżynierowie uczenia maszynowego i analitycy danych.



W książce:




  • wnioskowanie związków przyczynowych
  • budowa i działanie strukturalnych modeli przyczynowych
  • czteroetapowy proces wnioskowania związków przyczynowych w Pythonie
  • techniki modelowania efektu interwencji
  • nowoczesne metody odkrywania związków przyczynowych za pomocą Pythona
  • korzystanie z wnioskowania związków przyczynowych



Przyczyna i skutek, nic więcej. Pomyłki jako takie nie istnieją...



Jose Antonio Cotrina, hiszpański pisarz science fiction


Numer EAN
9788328908321
Data premiery
2024/05/28
Identyfikator
119048